Wrisensor

APA/APF Adjustable Low Pressure Switches

Performance Parameters

| Model | Adjustment Range | | Avg. Differential | | Model | Adjustment Range | | Avg. Differential | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | PSI | Bar | PSI | Bar | | PSI | Bar | PSI | Bar |
| 1 | $3-20$ | $0.2-1.4$ | $2-5$ | $0.13-0.4$ | 2 | $15-75$ | $1.03-6$ | $4-7$ | $0.27-0.5$ |
| 1A | $5-30$ | $0.3-2.1$ | $3-7$ | $0.21-0.5$ | 3 | $50-150$ | $3.5-10$ | $7-15$ | $0.5-1.0$ |

ELECTRICAL:
Standard:5A,125V/250VAC-U.L.Recognized 5A,12/24VDC- U.L. Recognized
Option -7: 0.2A,60VDC- U.L. Recognized
Gold contacts may be required for less than
12 VDC and 20 milliamps
MANUFACTURER'S OTHER RATING:
5A@40VDC
WETTED MATERIAL:
Diaphragm: Buna-N (standard)
(optional EPDM, KAPTON®, VITON®)
Housing: Brass (standard)
(optional: 316 Stainless Steel or

PROTECTION:

Exposed Terminals -IP00
DIN HC-IP65
Flying Leads, M12, Deutsch Integral

- IP69

REPEATABILITY:
$\pm 2 \%$ of full set point range at $21^{\circ} \mathrm{C}$
Ambient Temperature
SWITCH TYPE:
Snap Action
MECHANICAL LIFE:
1,000,000 cycles

TEMPERATURE RANGE:

BUNA-N: $-26^{\circ} \mathrm{C} \sim 110^{\circ} \mathrm{C}$
EPDM: $-23^{\circ} \mathrm{C} \sim 121^{\circ} \mathrm{C}$
KAPTON ${ }^{\oplus}$: $-40^{\circ} \mathrm{C} \sim 110^{\circ} \mathrm{C}$
VITON ${ }^{\oplus}$: $-18^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}$
(® Registered Trademark of DuPont)
MAXIMUM OVERPRESSURE:
350PSI(24Bar)

WEIGHT:

0.07 kg

Electroless Nickel Plated Steel)

Drawing

Ordering Information

Contact us

Nanjing Wotian Technology Co.,Ltd.
Add: 5 Wenying Road, Binjiang Development Zone, Nanjing, 211161, China
Sales Manager: Wuzhou Lian
MP: 0086-13998828452
Email: lianwuzhou@wtsensorus.com

Appendix 1: Definitions and Terms

DEFINITIONS AND TERMINOLOGY

ACCURACY, (REPEATABILITY) - Accuracy is the maximum allowable set point deviation of a single pressure or temperature switch under one given set of environmental and operational conditions.

ACTUATION AND DEACTUATION POINT - The actuation point (sometimes called set point) is the exact point at which the electrical circuit controlled by the switching element is opened (or closed) on increasing pressure or temperature. The deactuation point is the opposite at which the electrical circuit is closed (or opened) on decreasing pressure or temperature.

DEAD BAND - The dead band sometimes referred to as "differential" or "hysteresis" is the change in pressure between actuation and deactuation set points.

PRESSURE SWITCH - An instrument that upon the increase or decrease of a pressure or vacuum, opens or closes one or more electrical switching elements at a predetermined actuation point (setting)

PRESSURE SENSING ELEMENT - That portion of pressure switch that is in contact with and moves as a result of a change in pressure of the medium. The most common type of pressure sensing elements are diaphragms, accordion bellows, bourdon tubes, and pistons.

SINGLE POLE DOUBLE THROW (SPDT) SWITCHING ELEMENT A SPDT switching element has one normally open, one normally closed and one common terminal. Three terminals mean that the switch can be wired with the circuit either normally open (N/O) or normally closed (N/C).
NORMALLY CLOSED SWITCHING ELEMENT (NC) - Is one in which the terminals are wired so that current can flow through the switching element until pressure is applied to open the electrical circuit.

NORMALLY OPEN SWITCHING ELEMENT (NO) - Is one in which the terminals are wired so that no current can flow through the switching element until the pressure is applied to close the electrical circuit.

PRESSURE, PROOF - Proof Pressure is the maximum pressure which can be applied to any switch without causing permanent degradation.

Circuit Definitions

Form A - SPST - NO
Single Pole - Single Throw Normally Open
Form B - SPST - NC
Single Pole - Single Throw Normally Closed

Form C - SPDT

Single Pole - Double Throw

Standard Electrical Circuit		
Wire	DIN 43650	C
Color	Number	Circuit
Black	1	Common
Green	2	N. Closed
Red	3	N. Open

Wotian Pressure Switches are sealed, vibration resistant and ruggedly built to provide a reliable protection for automatic control of equipment and processes. They are designed for direct or remote mounting and offer a quality product at a competitive price.

Microswitch - Each Wotian APA pressure switch contains a precision, snap-action microswitch which meets or exceeds industrial standards for reliability; electrical capacity and long life.

The snap action micro switch meets underwriters and CSA specifications for 5 amp or 3 amp rating dependent upon specification type - consult factory for additional data.
Setting - The set point of each switch is preset at the factory as follows:

- Field adjustable series - bottom of range
- Factory set series - at the desired set point

The switches can be ordered for operation with either rising or falling temperature, vacuum or pressure. Reset of the microswitch is automatic and depends upon the dead band or differential of the particular model.

Switch Protection - Standard switches offer excellent protection and long life in most applications. They are also sealed for weatherproof protection. The corrosion-resistant materials in the wetted areas and the standard nitrile diaphragm are suitable for most media. Where required the switches are available with VITON®, KAPTON®, EPDM or Low Temperature Nitrile diaphragms and, in some cases, optional steel, brass or stainless steel housings and wetted areas.

Mechanism - Where the pressure switch is subject to higher pressure, either dynamic or static, of over 700 psi , the diaphragm operating mechanism includes an O-ring cushion which absorbs the slight operation motion required while preventing extrusion of the diaphragm material into the piston-to-cylinder clearance.

Gold Contacts - May be required for applications where less than 12VDC and 20 Milliamps

FL Flying Leads	SP "A"or"B" Circuit $1 / 4$ " Spades	SP "C" Circuit $1 / 4$ " Spades	TS 6-32 Terminal Screws
H DIN 43650A Male Half Only	HC DIN 43650A Cable Clamp	HN DIN 43650A 1/2" Conduit	HC11A, B, C \& D DIN 43650A Lighted DIN
$\begin{gathered} \text { HCC } \\ \text { DIN w/36" Cable } \end{gathered}$	$\begin{gathered} \text { HCM } \\ \text { DIN 43650C } \end{gathered}$	HCM.A, B, C \& D DIN 43650C Lighted DIN	MDP2 Deutsch DT06-2S 2 Pin Mating Plug
			$2 \mathrm{en}$
WTF/WTM Weather Pack Tower 2 Pin Male or Female Pins	WSF/WSM Weather Pack Shroud 2 Pin Male or Female Pins	WTF3/WTM3 Weather Pack Tower 3 Pin Male or Female Pins	WSF/WSM3 Weather Pack Shroud 3 Pin Male or Female Pins

Wrisensor

Appendix 3: Material Compatibility

Media	Buna	EPDM	Viton	Media	Buna	EPDM	Viton
Acetic Acid		*		Hydraulic Oil(PET	*		
Acetone		*		Base)			
Acetylene	*			Hydrocarbons	*		
Air	*			Hydrogen	*		
Alcohols	*			Hydrogen Sulphide		*	
Alkalies (Weak)	*			Isopropanol		*	
Alkalies (Strong)		*		JP-3-6	*		
Ammonia(Anhydrous)	*			Kerosene	*		
Ammonia(Hydroxide)		*		LPG	*		
Asphalt			*	Lube Oil(PET Base)	*		
Automotive Oils	*			Methanol	*		
Beer	*			MEK		*	
Benzene			*	Mineral Oil	*		
Boric Acid	*			Motor Oils	*		
Brake Fluid		*		Naptha		*	
Bunker Oil	*			Natural Gas	*		
Butane	*			Nitric Acid		*	
Butyl Cellosolve		*		Nitrogen	*		
Carbon Dioxide	*			Cleum Spirits			*
Carbon Monoxide	*			Oxygen	*		
Cellube		*		Ozone		*	
Chiorobenzene			*	Crude Oil	*		
Citric Acid	*			Phosphoric Acid			*
Coke Oven Gas			*	Propane	*		
Coolant	*			Propanol	*		
Diesel Fuels	*			Pydraul		*	
Di-Ester Lube			*	Shell Iris 902	*		
(MIL-L-7808)				Silicone Greases	*		
Dowtherm A\&E		*		Silicone Oils	*		
Ethanol	*			Skydrol 500 \& 7000		*	
Ether		*		Soap Solutions	*		
Ethylene	*			Steam Below $320^{\circ} \mathrm{F}$		*	
Ethylene Glycol	*			Stoddard Solvent	*		
Freon				Sulfuric Acid			*
11,12,112,114				Tolulene			*
Freon 22		*		Transmission Fluid	*		
Fyrquel		*		Trisodium Phosphate	*		
Fuel Oil	*			Turpentine	*	*	
Gasoling	*			Water to $220^{\circ} \mathrm{F}$	*		
Glycerin	*			($104{ }^{\circ} \mathrm{C}$)			
Helium	*			Water to $302^{\circ} \mathrm{F}$		*	
Hexane	*			(150 ${ }^{\circ} \mathrm{C}$)			

