

PC20 Temperature and Pressure Integrated Sensor

Features

- With constant current and constant voltage excitation options
- Imported highly reliable pressure die
- Wide temperature compensation
- Normalized output available
- Compensation board filled with glue for protection against moisture
- Φ19mm standard OEM
- All 316L material
- High performance, all solid, high reliability
- 18 months warranty period

Applications

- Process control systems
- Pressure calibration instruments
- Refrigeration equipment and HVAC control
- Hydraulic systems and valves
- Level measurement
- Biomedical instruments
- Ships and navigation
- Aircraft and avionics systems
- Weaponry

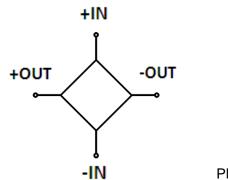
Notes:

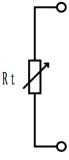
1 Do not touch the diaphragm with hard objects, which may cause damage to the diaphragm.

2 Please read the Instruction Manual of the product carefully before installation and check the relevant information of the product.

3 Strictly follow the wiring method for wiring, otherwise it may cause product damage or other potential faults.

4 Misuse of the product may cause danger or personal injury.


Product overview


PC20 temperature and pressure integrated sensor is based on PC10 and mounted with built-in platinum resistance to accomplish simultaneous measurement of pressure and temperature. The temperature measurement can meet the need for high-precision temperature compensation of the product.

Equivalent circuit

(1) Pressure output

(2) Temperature output

Platinum resistance

Notes:

- 1 Do not misuse documentation.
- 2 The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- 3 Complete installation, operation, and maintenance information is provided in the instructions of the product.
- 4 Misuse of the product may cause danger or personal injury.

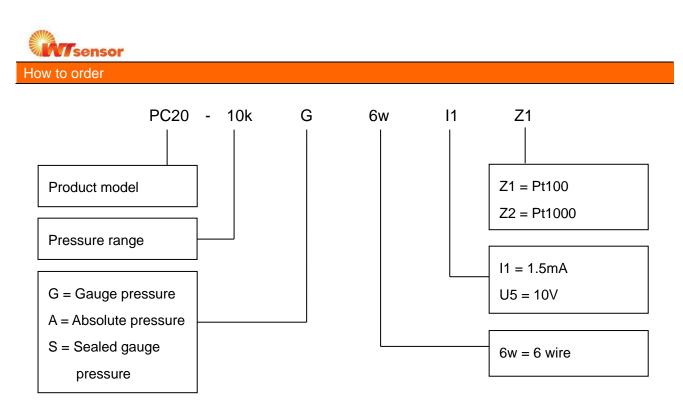
Electrical performance p	arameters			
Pressure range	-100kPa~0~10kPa100MPa			
Pressure reference	Gauge pressure, Absolute pressure, Sealed gauge pressure			
Excitation	1.5mA recommended for constant current			
	10V recommended for constant voltage			
Input impedance	Constant current: $2k\Omega \sim 5k\Omega$			
input impedance	Constant voltage: $3k\Omega \sim 18k\Omega$			
Electrical connection	Gold-plated KOVAR pin or silicon soft wire			
Compensation temp.	Constant current: 0°C ~60°C (≤70kPa), -10°C ~70°C (other ranges);			
Compensation temp.	Constant voltage: -20℃~85℃			
Operating temp.	-40 °C∼ 120 °C			
Storage temp.	-40℃~120℃			
Insulation resistance	≥200MΩ/250VDC			
Response time	≤1ms (up to 90%FS)			
Measured medium	All the liquids and gases compatible with 316L.			
Mechanical vibration	20g (20~5000Hz)			
Shock	100g (10ms)			
Service life	10×10 ⁶ (cycles)			
Structural performance p	parameters			
Diaphragm material	316L			
Housing material	316L			
Oil filling	Silicon oil			
Sealing ring	NBR or fluorine rubber			

Basic parameters							
ltem	Condition	Min	Nominal	Max	Unit	Note	
Nonlinearity		-0.3	±0.2	0.3	%FS	Note(1)	
Hysteresis		-0.05	±0.03	0.05	%FS		
Repeatability		-0.05	±0.03	0.05	%FS		
Zero output		-2	±1	2	mV		
	1.5mA, 10kPa	30					
Full scale span	1.5mA, other ranges	60	90	150	mV		
output	10V, 10kPa	60			mv		
	10V, other ranges	98	100	102			
Zero temp.	10kPa	-2	±1.5	2	%FS		
coefficient	other ranges	-1.5	±0.75	1.5	7053	Note(2)	
Span temp.		1 5	· 0 7E	4 5	0/ FS	Note(2)	
coefficient		-1.5	±0.75	1.5	%FS	note(2)	
Thermal hysteresis		-0.075	±0.05	0.075	%FS	Note(3)	
Long term stability		-0.3	±0.2	0.3	%FS/Year		

Note:

(1) Calculate according to BFSL least square method.

(2) In the compensation temperature range, refer to 30° ° for 0° ° $\sim 60^{\circ}$ ° and -10° ° $\sim 70^{\circ}$ °, and 32.5° °, for -20° ° $\sim 85^{\circ}$ °.


(3) After passing high and low temperature, return to the reference temperature.

ructure and dimensions					
14 <u>110±5mm</u>	Wire color	Qty	Definition		
55 6.1 Tube for gauge pressure sensor 8 00 61 0 -ring	Red Blue Yellow White Green	1 1 1 1 2	Excitation+(IN+) Excitation-(IN-) Output+(OUT+) Output-(OUT-) Temp. output(non polar)		

Pressure ran	ge selection				
Code	Pressure reference	Pressure range	Overpressure	Burst pressure	O-ring
10k	G	0~10kPa	300%FS	600%FS	NBR
20k	G	0∼20kPa	300%FS	600%FS	NBR
35k	G, A	0∼35kPa	300%FS	600%FS	NBR
70k	G	0~70kPa	300%FS	600%FS	NBR
100k	G, A	0~100kPa	200%FS	500%FS	NBR
160k	G, A	0~160kPa	200%FS	500%FS	NBR
250k	G, A	0∼250kPa	200%FS	500%FS	NBR
400k	G, A	0∼400kPa	200%FS	500%FS	NBR
600k	G, A	0∼600kPa	200%FS	500%FS	NBR
1M	G, A	0∼1MPa	200%FS	500%FS	NBR
1.6M	G, A, S	0~1.6MPa	200%FS	500%FS	NBR
2.5M	G, A, S	0∼2.5MPa	200%FS	500%FS	NBR
4M	S	0∼4MPa	200%FS	400%FS	NBR
6M	S	0∼6MPa	200%FS	400%FS	Fluorine rubber
10M	S	0~10MPa	200%FS	400%FS	Fluorine rubber
16M	S	0∼16MPa	200%FS	400%FS	Fluorine rubber
25M	S	0∼25MPa	150%FS	400%FS	Fluorine rubber
40M	S	0∼40MPa	150%FS	300%FS	Fluorine rubber
60M	S	0∼60MPa	150%FS	300%FS	Fluorine rubber
100M	S	0~100MPa	150%FS	300%FS	Fluorine rubber
N1k	Omitted	-100~0kPa	300kPa	600kPa	NBR
N2k	Omitted	0∼-100kPa	300kPa	600kPa	NBR
N3k	Omitted	±100kPa	300kPa	600kPa	NBR
N4k	Omitted	-100~160kPa	480kPa	900kPa	NBR
N5k	Omitted	-100~250kPa	750kPa	1.25MPa	NBR
N6k	Omitted	-100~400kPa	800kPa	2MPa	NBR
N7k	Omitted	-100~600kPa	1.2MPa	3MPa	NBR
N8M	Omitted	-0.1~1MPa	2MPa	5MPa	NBR
N9M	Omitted	-0.1~1.6MPa	3MPa	9MPa	NBR
N10M	Omitted	-0.1~2.5MPa	5MPa	12.5MPa	NBR

Note: G: Gauge pressure, A: Absolute pressure, S: Sealed gauge pressure

Example: PC20-10kG4wl1Z1

Refer to PC20 pressure sensor, with pressure range 10kPa, gauge pressure, 6 wire, 1.5mA excitation, temperature measuring element Pt100.

Ordering tips:

Pressure range can be selected higher or lower than actual conditions but should be within ±30%FS.
Pressure reference consists of gauge pressure, absolute pressure and sealed gauge pressure.

- (1) Gauge pressure is based on the current atmospheric pressure. Generally, it refers to the measurement of pressure which is greater than the current atmospheric pressure. Negative pressure is a special case of gauge pressure. It refers that there is such working condition that the pressure of work site is lower than the current atmospheric pressure.
- (2) Absolute pressure is based on vacuum.
- (3) As for sealed gauge pressure, PC10 uses absolute pressure die for gauge pressure product based on the atmospheric pressure of production site. For pressure range above 6MPa, gauge pressure cannot be selected, but only sealed gauge pressure.

3 Confirm the maximum overload of the applied system, which should be less than the overload protection limit of the sensor, otherwise it will affect the product life or even damage the product.

4 The commonly used compensation of the product is 1.5mA constant current compensation. Suggest to select the option with priority.

5 The material and process for manufacturing negative pressure sensors are different from those of positive pressure sensors. So gauge pressure sensors cannot be used as substitute of negative pressure sensors.

6 For special requirements on performance parameters and functions of the product, please contact us.

Wotian reserves the right to make any change in this publication without notice. The information provided is believed to be accurate and reliable as of this product sheet.

Contact us

Nanjing Wotian Technology Co.,Ltd. website: www.wtsensor.com Add: 5 Wenying Road, Binjiang Development Zone, Nanjing, 211161, China

V1.0