

PC12 Flush Diaphragm Pressure Sensor with Thread

Features

- Flush diaphragm pressure sensor with thread structure
- Imported highly reliable pressure die
- A single time silicon oil isolated filling technology
- Compensation board filled with glue for protection against moisture
- All stainless steel housing material
- High accuracy, high reliability
- Strong anti-interference, good long-term stability
- 18 months warranty period

Applications

- Medical, food industry
- Environmental protection, chemical, coating
- Polyurethane equipment
- Industry standards supporting

Notes:

- 1 Do not touch the diaphragm with hard objects, which may cause damage to the diaphragm.
- 2 Please read the Instruction manual of the product carefully before installation and check the relevant information of the product.
- 3 Strictly follow the wiring method for wiring; otherwise it may cause product damage or other potential faults.
- 4 Misuse of the product may cause danger or personal injury.

Product overview

PC12 pressure sensor adopts a single time silicon oil filling technology. The diaphragm directly contacts with the measuring medium. The perceived pressure is transmitted to the pressure chip through the silicone oil to generate an electrical signal, and the compensation circuit corrects the pressure signal to a linear pressure signal.

The end face of the thread is directly exposed to the pressure, which can prevent scaling, unsanitary and viscous pressure blockage. It is especially suitable for viscous fluid pressure and liquid level measurement in the medical and food industries. It is widely used in food, pharmaceutical, winemaking and other sanitary industries.

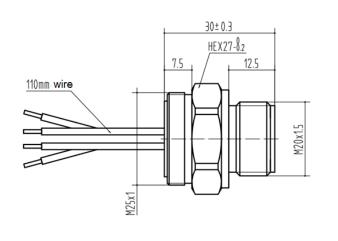
The company can customize products for customers, to make products of special structure and size. We have mature batch production lines, which can ensure production tasks be finished perfectly.

Notes:

- 1 Do not misuse documentation.
- 2 The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- 3 Complete installation, operation, and maintenance information is provided in the instructions of the product.
- 4 Misuse of the product may cause danger or personal injury.

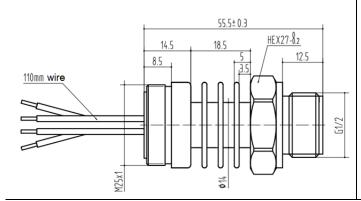
Electrical performance parameters				
Pressure range	-100kPa∼0∼10kPa100MPa			
Pressure reference	Gauge pressure, Absolute pressure, Sealed gauge pressure			
Excitation	1.5mA recommended for constant current			
Input impedance	Constant current: $2k\Omega{\sim}5k\Omega$			
Electrical connection	Gold-plated KOVAR pin or silicon soft wire			
Compensation temp.	Constant current: 0°C~60°C (≤70kPa),-10°C~70°C (other ranges);			
Operating temp.	-40℃~120℃			
Storage temp.	-40℃~120℃			
Insulation resistance	≥200MΩ/250VDC			
Response time	≤1ms (up to 90%FS)			
Measured medium	All the liquids and gases compatible with 316L.			
Mechanical vibration	20g (20∼5000Hz)			
Shock	100g (10ms)			
Service life	10×10 ⁶ (cycles)			

Structural performance parameters				
Diaphragm material	316L			
Housing material	316L			
Oil filling	Medium chain triglycerides			


Basic parameters						
Item	Condition	Min	Nominal	Max	Unit	Note
Nonlinearity		-0.3	±0.25	0.3	%FS	Note(1)
Hysteresis		-0.05	±0.03	0.05	%FS	
Repeatability		-0.05	±0.03	0.05	%FS	
Zero output		-2	±1	2	mV	
Span output	10kPa Other range	30 60	90	150	mV	1.5mA supply
Zero temp.	10kPa other ranges	-2 -1.5	±1.5 ±0.75	2 1.5	%FS	Note(2)
Span temp. coefficient		-1.5	±0.75	1.5	%FS	Note(2)
Thermal hysteresis		-0.075	±0.05	0.075	%FS	Note(3)
Long term stability		-0.3	±0.2	0.3	%FS/year	

Note:

- (1) Calculate according to BFSL least square method.
- (3)After passing high and low temperature, return to the reference temperature.



Structure and dimensions

Wire color	Definition	

Red	Excitation+(IN+)		
Blue	Excitation-(IN-)		
Yellow	Output+(OUT+)		
White	Output-(OUT-)		

How to choose cooling elements:

Medium temp range:-40°C \sim 150°C (3 pieces cooling elements)

Medium temp range:-40 $^{\circ}\text{C}\!\sim\!220\,^{\circ}\!\text{C}$ (5 pieces cooling elements)

Pressure range selection						
Code	Pressure reference	Pressure range	Overpressure	Burst pressure	O-ring	
10k	G	0∼10kPa	300%FS	600%FS	ED ring	
20k	G	0∼20kPa	300%FS	600%FS	ED ring	
35k	G	0~35kPa	300%FS	600%FS	ED ring	
70k	G	0∼70kPa	300%FS	600%FS	ED ring	
100k	G、A	0∼100kPa	200%FS	500%FS	ED ring	
160k	G、A	0∼160kPa	200%FS	500%FS	ED ring	
250k	G、A	0∼250kPa	200%FS	500%FS	ED ring	
400k	G	0∼400kPa	200%FS	500%FS	ED ring	
600k	G	0∼600kPa	200%FS	500%FS	ED ring	
1M	G、S	0∼1MPa	200%FS	500%FS	ED ring	
1.6M	G、S	0~1.6MPa	200%FS	500%FS	ED ring	
2.5M	G、S	0~2.5MPa	200%FS	500%FS	ED ring	
4M	S	0∼4MPa	200%FS	400%FS	ED ring	
6M	S	0∼6MPa	200%FS	400%FS	ED ring	
10M	S	0~10MPa	200%FS	400%FS	ED ring	
16M	S	0~16MPa	200%FS	400%FS	ED ring	

25M	S	0~25MPa	150%FS	400%FS	ED ring
40M	S	0~40MPa	150%FS	300%FS	ED ring
60M	S	0~60MPa	150%FS	300%FS	ED ring
100M	S	0∼100MPa	150%FS	300%FS	ED ring
N5k	Omitted	-100∼250kPa	750kPa	1.25MPa	ED ring
N7k	Omitted	-100∼600kPa	1.2MPa	3МРа	ED ring
N8M	Omitted	-0.1∼1MPa	2MPa	5MPa	ED ring
N9M	Omitted	-0.1∼1.6MPa	3МРа	9MPa	ED ring
N10M	Omitted	-0.1∼2.5MPa	5MPa	12.5MPa	ED ring

Note: G: Gauge pressure, A: Absolute pressure, S: Sealed gauge pressure

Example: PC12-100kG4WI1C1H1T0

PC12 pressure sensor, pressure range100kPa, gauge pressure, 4 wire, 1.5mA constant current excitation, pressure port M20*1.5, housing port: M25*1, without cooling elements

Ordering tips:

- 1 Pressure range can be selected higher or lower than actual conditions but should be within ±30%FS.
- 2 Pressure reference consists of gauge pressure, absolute pressure and sealed gauge pressure.
- (1) Gauge pressure is based on the current atmospheric pressure. Generally, it refers to the measurement of pressure which is greater than the current atmospheric pressure. Negative

pressure is a special case of gauge pressure. It refers that there is such working condition that the pressure of work site is lower than the current atmospheric pressure.

- (2) Absolute pressure is based on vacuum.
- (3) As for sealed gauge pressure, it uses absolute pressure die for gauge pressure product based on the atmospheric pressure of production site. For pressure range above 6MPa, gauge pressure cannot be selected, but only sealed gauge pressure.
- 3 Confirm the maximum overload of the applied system, which should be less than the overload protection limit of the sensor, otherwise it will affect the product life or even damage the product.
- 4 The commonly used compensation of the product is1.5mA constant current compensation. Suggest to select the option with priority.
- 5 The material and process for manufacturing negative pressure sensors are different from those of positive pressure sensors. So gauge pressure sensors cannot be used as substitute of negative pressure sensors.

6 For special requirements on performance parameters and functions of the product, please contact us.

Wotian reserves the right to make any change in this publication without notice. The information provided is believed to be accurate and reliable as of this product sheet.

5

Contact us

Nanjing Wotian Technology Co., Ltd.

website: www.wtsensor.com

Add: 5 Wenying Road, Binjiang Development Zone, Nanjing, 211161, China