

# PCL-E20 Divided Electromagnetic Flowmeter

#### **Features**

- The measurement accuracy is not affected by factors such as fluid density, viscosity, temperature, pressure, etc
- There are no intercepting or blocking components in the measurement pipeline, which will not cause pressure loss or blockage
- Simple structure, convenient installation, and low requirements for straight pipe sections
- No mechanical transmission components, sturdy and vibration resistant
- Adopting a multi electrode structure, stable measurement, high accuracy, equipped with a grounding electrode, without the need for a grounding ring, saving costs
- When power is off, EEPROM c an save set parameters and ac cumulated flow values
- The converter uses a low-power microcontroller for data processing, with reliable performance, high accuracy, and low power consumption. The LCD meter can display parameters such as cumulative flow rate, instantaneous flow rate, flow rate, and flow percentage
- Bidirectional measurement system, capable of measuring forward and reverse flow rates
- Low frequency rectangular wave excitation improves flow stability, reduces power loss, and has superior low flow rate characteristics



#### **Product overview**

The PCL-E20 series electromagnetic flowmeter is a fully intelligent flowmeter developed using advanced technology both domestically and internationally. It has the characteristics of high measurement accuracy, high reliability, good stability, and long durability.

The PCL-E20 series strictly controls and pays attention to every step in the process of design, material selection, process manufacturing, production assembly, and factory testing; Equipped with calibration devices compatible with different calibers, each electromagnetic flowmeter manufactured has undergone real flow calibration. We have designed and developed specialized large-scale production software and hardware for electromagnetic flow meters, effectively ensuring the long-term high quality and high quality of our products. The product adopts a wide temperature range LCD display and a simple display interface, with complete and practical menu functions, simple and convenient button operation, and convenient on-site operation.

#### **Measuring principle**

The electromagnetic flow meter operates based on the Faraday electromagnetic induction principle, and two detection electrodes are installed on the wall of the non magnetic measuring tube where the axis and magnetic field field lines are perpendicular to each other. When the conductive liquid moves along the measuring tube axis, the conductive liquid cuts the magnetic field line to generate an induction potential, which is detected by two detection electrodes on the measuring tube.

The magnitude of the induced electromotive force and the physical quantities represented by each parameter in the formula are:  $U = K \times B \times D \times \overline{V}$ 



 Process control fields in industries such as water supply, heating, environmental protection, food, water conservancy, metallurgy, and pharmaceuticals.

#### Note:

1. Do not misuse the file.

2. The information in this selection is for reference only and cannot be used as a product installation guide.

3. Complete installation, operation, and maintenance information is provided in the product manual

- U: Induced electromotive force
- K: Instrument constant
- B: Magnetic induction intensity
- D: Measure the inner diameter of the tube

: Measure the average flow velocity within the cross-section of the tube

 $\overline{\mathcal{V}}$  : Measure the average flow velocity within the cross-section of the tube





| Performance paran | neters                                                                             |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------|--|--|--|--|
| Pipe diameter     | Flange type DN10~DN1600                                                            |  |  |  |  |
| Accuracy          | ± 0.2% FS (optional), ± 0.5% FS (default)                                          |  |  |  |  |
| Electrode form    | Standard fixed electrode                                                           |  |  |  |  |
|                   | GB (National Standard): PN2.5、PN6、PN16、PN25、PN40                                   |  |  |  |  |
|                   | ANSI (American Standard): CLASS 150、CLASS 300                                      |  |  |  |  |
| Rated pressure    | DIN(German standard): PN10, PN1, PN25, PN40                                        |  |  |  |  |
|                   | JIS (Japanese Standard):5K, 10K, 16K, 20K                                          |  |  |  |  |
|                   | Special pressure: customizable                                                     |  |  |  |  |
| Electrode         | 316L, Titanium (Ti), Hastelloy (HB, HC), Tantalum (Ta), Tungsten Carbide (WC),     |  |  |  |  |
| material          | Platinum Iridium (Pt)                                                              |  |  |  |  |
| Lipipa            | Neoprene rubber (CR), natural rubber (NR), polyurethane rubber (PU),               |  |  |  |  |
|                   | polytetrafluoroethylene (PTFE), F46, PFA                                           |  |  |  |  |
| Measuring         | Stainless steel                                                                    |  |  |  |  |
| catheter          |                                                                                    |  |  |  |  |
| Flange and        | Carbon steel (conventional), stainless steel (optional)                            |  |  |  |  |
| gauge body        |                                                                                    |  |  |  |  |
| Converter         | Aluminum allov die-casting                                                         |  |  |  |  |
| housing           |                                                                                    |  |  |  |  |
| Power supply      | 85V~264V AC, 47Hz~63Hz(220V AC); 18V~30V DC(24V DC)                                |  |  |  |  |
|                   | 4mA~20mA DC (load resistance 0 $\Omega$ ~750 $\Omega$ , active output signal)      |  |  |  |  |
|                   | Hart output signal                                                                 |  |  |  |  |
| Output signal     | Frequency and pulse output signal (optional for passive and active output signals) |  |  |  |  |
|                   | Upper and lower limit alarm output signal, air traffic control alarm               |  |  |  |  |
|                   | RS485 output signal (standard ModBus protocol)                                     |  |  |  |  |
|                   | Profibus-DP (customized), Profibus-PA (customized)                                 |  |  |  |  |
| Wire connection   | M20 × 1.5 Waterproof joint                                                         |  |  |  |  |
| Protection grade  | IP68 (sensor part)                                                                 |  |  |  |  |
| Ambient           | -20℃~60℃                                                                           |  |  |  |  |
| temperature       |                                                                                    |  |  |  |  |
| Storage           | -40°C∼60°C                                                                         |  |  |  |  |
| temperature       |                                                                                    |  |  |  |  |
| Relative humidity | 5%~90%                                                                             |  |  |  |  |
| Medium            | -10 ℃~80 ℃ (chloroprene rubber)- 10 ℃~120 ℃ (PTFE);                                |  |  |  |  |
| temperature       | -10 ℃~80 ℃ (polyurethane rubber)- 10 ℃~150 ℃ (F46)                                 |  |  |  |  |
| Dielectric        | >5µS/cm                                                                            |  |  |  |  |
| conductivity      |                                                                                    |  |  |  |  |
| Explosion proof   | Explosion proof (24VDC) certificate number: CNEx22.1736X logo: Exd ia mb IIC       |  |  |  |  |
|                   | 16 Gb                                                                              |  |  |  |  |
| Connecting        | 10 meters (default), the cable length between the meter head and the sensor is of  |  |  |  |  |
| cables            | other lengths and needs to be customized separately                                |  |  |  |  |



In the above figure, A represents the length of the flow meter guide pipe; H represents the height of the flow meter; N represents the number of bolt holes; L represents the diameter of the bolt hole; K represents the diameter of the bolt hole center circle; D represents the outer diameter of the flange. The overall dimensions of the split electromagnetic flowmeter are shown in Table 1.

| DN   | Rated pressure | Overall dimensions<br>(mm) |      | Flange connection size (mm) |      |        |
|------|----------------|----------------------------|------|-----------------------------|------|--------|
|      | (MPa)          | А                          | Н    | D                           | K    | n-ΦL   |
| 10   | 4.0            | 200                        | 304  | 90                          | 60   | 4-Φ14  |
| 15   | 4.0            | 200                        | 304  | 95                          | 65   | 4-Φ14  |
| 20   | 4.0            | 200                        | 304  | 105                         | 75   | 4-Φ14  |
| 25   | 4.0            | 200                        | 312  | 115                         | 85   | 4-Φ14  |
| 32   | 4.0            | 200                        | 330  | 140                         | 100  | 4-Φ18  |
| 40   | 4.0            | 200                        | 340  | 150                         | 110  | 4-Φ18  |
| 50   | 4.0            | 200                        | 338  | 165                         | 125  | 4-Φ18  |
| 65   | 1.6            | 200                        | 358  | 185                         | 145  | 8-Ф18  |
| 80   | 1.6            | 200                        | 374  | 200                         | 160  | 8-Ф18  |
| 100  | 1.6            | 250                        | 402  | 220                         | 180  | 8-Ф18  |
| 125  | 1.6            | 250                        | 425  | 250                         | 210  | 8-Ф18  |
| 150  | 1.6            | 300                        | 458  | 285                         | 240  | 8-Ф23  |
| 200  | 1.6            | 350                        | 522  | 340                         | 295  | 8-Ф23  |
| 250  | 1.6            | 450                        | 574  | 405                         | 355  | 12-Ф26 |
| 300  | 1.6            | 500                        | 624  | 460                         | 410  | 12-Ф26 |
| 350  | 1.6            | 550                        | 678  | 520                         | 470  | 16-Ф26 |
| 400  | 1.6            | 600                        | 742  | 580                         | 252  | 16-Ф30 |
| 450  | 1.0            | 600                        | 794  | 615                         | 565  | 20-Ф26 |
| 500  | 1.0            | 600                        | 862  | 670                         | 620  | 20-Ф26 |
| 600  | 1.0            | 600                        | 950  | 780                         | 725  | 20-Ф30 |
| 700  | 0.6            | 700                        | 1058 | 860                         | 810  | 24-Ф26 |
| 800  | 0.6            | 800                        | 1166 | 975                         | 920  | 24-Ф30 |
| 900  | 0.6            | 900                        | 1272 | 1075                        | 1020 | 24-Ф30 |
| 1000 | 0.6            | 1000                       | 1376 | 1175                        | 1120 | 28-Ф30 |

| Tabla 1 | Extornal | Dimonsions | of Split | Electromo  | anotio | Eloumotor  |
|---------|----------|------------|----------|------------|--------|------------|
|         | LAIGINAI | Dimensions | or opin  | LIECTIONIA | gneac  | liowinetei |



| 1200 | 0.6 | 1200 | 1578 | 1405 | 1340 | 32-Ф33 |
|------|-----|------|------|------|------|--------|
| 1400 | 0.6 | 1400 | 1840 | 1630 | 1560 | 36-Ф36 |
| 1600 | 0.6 | 1600 | 2078 | 1830 | 1760 | 40-Ф36 |

| <b>Electrical connection</b>                  |                |                                                                                                                                                                                                                                                     |
|-----------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure                                     | Wiring diagram | Note                                                                                                                                                                                                                                                |
| PCL-E20 split<br>electromagnetic<br>flowmeter | E              | <ol> <li>RS485 communication cable<br/>requires the use of two core<br/>twisted pair shielded wire;</li> <li>The power line and 4-20mA<br/>DC signal line cannot use the<br/>same cable, and two cables need<br/>to be wired separately.</li> </ol> |

When wiring, select the corresponding power terminal according to the product specifications to connect to the power line, and then connect to the signal line according to the required output signal signal. The meaning of the PCL-E20 split type electromagnetic flowmeter terminal markings is shown in Table 2.

 Table 2 Wiring Terminals of Split Electromagnetic Flowmeter

| Terminal<br>symbols | Function Description          | Terminal symbols | Function Description  |
|---------------------|-------------------------------|------------------|-----------------------|
| LN+                 | Power input positive          | TRX+             | Communication input   |
|                     | Power input pegative          |                  | (RS485 A)             |
|                     | Power input negative          |                  | ground                |
| F/P-                | Pulse/frequency output signal | IOUT+            | Current output signal |
|                     | ground                        |                  | positive              |
| F/P+                | Pulse/frequency output signal | EXT+             | Excitation current    |
|                     | positive                      |                  | positive              |
| DOA-                | Alarm output signal ground    | EXT-             | Excitation current    |
|                     |                               |                  | negative              |
| DOA+                | Alarm output signal positive  | SIG+             | Signal 1              |
| DOB-                | Reserve                       | SGND             | Signal ground         |
| DOB+                | Reserve                       | SIG-             | Signal 2              |
| DIN-                | Reserve                       | DRS+             | Positive excitation   |
|                     |                               |                  | shielding             |
| DIN+                | Reserve                       | MTDR             | Excitation shielding  |
|                     |                               |                  | ground                |
| TRX-                | Communication input (RS485-   | DRS-             | Excitation shielding  |
|                     | B)                            |                  | negative              |



#### Install

#### 1. Installation precautions

- (1) When installing electromagnetic flow meters, they should avoid direct sunlight or areas with high ambient temperature to prevent insulation performance damage caused by unacceptable temperature rise of the excitation coil due to high ambient temperature.
- (2) Electromagnetic flow meters should be kept away from magnetic fields, such as large motors, transformers, and welding machines.
- (3) During installation, electromagnetic flow meters should avoid vibration.
- (4) The direction of fluid flow should be consistent with the direction indicated by the flow meter.
- (5) Electromagnetic flow meters are generally installed upstream of the valve.

The electromagnetic flowmeter must operate under full pipe conditions and cannot be empty or empty. It is necessary to ensure that the measuring pipeline is always filled with the measured medium. When installing, attention should be paid to the installation position, as shown in Figure 1.



Figure 1 Installation Location

#### 2.Installation direction

The positive direction of fluid flow during installation should be consistent with the arrow direction marked on the sensor, and there must be sufficient installation and maintenance space near the flowmeter. During installation, supports for the pipeline should be installed on both sides of the flowmeter to prevent stress on the flowmeter due to pipeline vibration, impact, and contraction.

When installing an electromagnetic flow meter, it is generally necessary to ensure that the axis of the measuring electrode is approximately horizontal when installing horizontally; If the axis of the measuring electrode is perpendicular to the ground, bubbles tend to accumulate near the electrode above, blocking fluid contact with it, while the electrode below is prone to being covered by mud or impurities. The converter is generally installed above the pipeline to prevent water from entering the converter.



Figure 2 Installation Direction

#### 3.Flowmeter piping

The misalignment between the pipeline axis and the electromagnetic flow meter axis, or the



deviation between the pipeline flange and the electromagnetic flow meter flange, is the cause of the pipeline flange jumping and fracture. Therefore, when installing the flow meter, it is necessary to first correct the misalignment or inclination of the pipeline, as well as the installation distance deviation between the two flanges.



#### 4. Install front and rear straight pipe sections

In order to ensure the measurement accuracy of the electromagnetic flowmeter, a certain length of straight pipe sections should be left before and after it.

When installing the electromagnetic flow meter at the location where there are valves in the front and rear, the straight pipe sections in the front and rear should at least meet the length of the first 5D and then 2D (D is the inner diameter of the flow meter guide pipe), and the front and rear valves need to be fully opened, as shown in Figure 4.



Figure 4 Straight pipe section with front and rear valves

When the electromagnetic flow meter is installed at the rear end of the T-tube, it is necessary to ensure a minimum straight pipe section of 5D or more between the electromagnetic flow meter and the T-tube, as shown in Figure 5.



Figure 5 Straight pipe section with T-shaped pipe at the front end of the flowmeter

When the electromagnetic flow meter is installed at the rear end of a 90 ° bend, it is necessary to ensure a minimum straight pipe section of 5D between the electromagnetic flow meter and the end of the bend, as shown in Figure 6.



90 degree elbow



Figure 6: Straight pipe section with a 90 ° bend at the front end of the flowmeter

When the electromagnetic flow meter is installed at the back end of the valve and the valve is not fully open, a minimum of 10D straight pipe section needs to be ensured between the electromagnetic flow meter and the back end of the valve, as shown in Figure 7.



Figure 7: Straight pipe section with partially opened valve at the front end of the flow mete

When the electromagnetic flow meter is installed at the rear end of the expanding pipe, a minimum of 10D straight pipe section needs to be ensured between the electromagnetic flow meter and the rear end of the expanding pipe, as shown in Figure 8.



Figure 8: Straight pipe section with partially opened valve at the front end of the flow meter **5. Grounding requirements for converter installation** 

The grounding terminal of the converter housing should be grounded with a copper wire of no less than 1.6mm2. The grounding resistance from the converter housing to the ground should be less than 10  $\Omega$ .

Firstly  $\Phi$  20 copper pipes, cut into a length of 1700mm (can be extended as needed) to make ground nails buried 1500mm (note: when burying ground nails, sprinkle a layer of crushed wood charcoal on the tip of the nails, and then pour salt water)

Next, weld 4mm2 copper wire onto the ground stud, and finally connect the ground wire to the sensor flange, grounding ring, and pipeline flange, as shown in Figure 9.

Attention: Stainless steel material is required for fixing ground wire screws, spring washers, and flat washers.





Figure 9 Schematic diagram of converter grounding



| PCL-E | 20-D | N100     | ) P16  | то       | N5           | E0             | EE                 | 1 CC              | )          | F0 0               | 30 S           | 50                        | B0 /                                             | A0                                            | EX0                                                       |                                                     |
|-------|------|----------|--------|----------|--------------|----------------|--------------------|-------------------|------------|--------------------|----------------|---------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|
|       |      |          |        |          |              |                |                    |                   |            |                    |                |                           | Code<br>EX0<br>EX1                               | ;                                             | Explo<br>No<br>Ex d                                       | osion-pro<br>ia mb IIC                              |
|       |      |          |        |          |              |                |                    |                   |            |                    |                | Co<br>de                  | Paire                                            | ed att                                        | achm                                                      | ents                                                |
|       |      |          |        |          |              |                |                    |                   |            |                    | Cod<br>B0      | A0<br>A1<br>A2<br>A3<br>e | No pa<br>Carb<br>304 d<br>316L<br>Digita<br>RS48 | aired<br>on st<br>comp<br>com<br>com<br>l out | l attac<br>teel co<br>panion<br>panio<br>put sig<br>odbus | hments<br>ompanion<br>i flange<br>in flange<br>gnal |
|       |      |          |        |          |              |                |                    |                   |            |                    | B1             |                           | Hart                                             | ``                                            |                                                           | ,                                                   |
|       |      |          |        |          |              |                |                    |                   |            | Co<br>de           | Ana            | log ou                    | tput si                                          | gnal                                          |                                                           |                                                     |
|       |      |          |        |          |              |                |                    |                   | Co         | S0                 | 4-20           | )mA (v                    | vith pu                                          | llse/fi                                       | reque                                                     | ncy)                                                |
|       |      |          |        |          |              |                |                    |                   | de         | Powe               | er sup         | ply                       | Code                                             | ;                                             | Powe                                                      | er supply                                           |
|       |      |          |        |          |              |                |                    | Co                | G0         | 24V                | DC             |                           | G1                                               |                                               | 220V                                                      | AC                                                  |
|       |      |          |        |          |              |                |                    | de                | Flai       | nge ma             | aterial        |                           | Code                                             | 9                                             | mate                                                      | rial                                                |
|       |      |          |        |          |              |                |                    | F0<br>F1          | Car<br>304 | bon ste<br>stainle | eel<br>Ses ste | امد                       | F2                                               |                                               | 316L                                                      | stainless                                           |
|       |      |          |        |          |              |                | Со                 | Excit             | ation      | shell r            | nateri         | al                        | Со                                               | Ex                                            | citatic                                                   | on shell                                            |
|       |      |          |        |          |              |                | de<br>C0           | Carb              | on st      | eel                | natori         |                           | de<br>C2                                         | ma<br>31                                      | aterial<br>6L                                             | stainless                                           |
|       |      |          |        |          |              |                | C1                 | 3041              | stain      | less st            | eel            |                           |                                                  |                                               |                                                           |                                                     |
|       |      |          |        |          |              | Co<br>de       | Grou               | nding             | meth       | od                 | Co<br>de       | Grou                      | nding                                            | meth                                          | nod                                                       |                                                     |
|       |      |          |        |          | Ca           | EE             | No                 |                   | grou       | unding             | E              | Built-                    | in gro                                           | undir                                         | ng ele                                                    | ctrode                                              |
|       |      |          |        |          | de           | Elect          | rode n             | nateria           | I          |                    | de             | Elect                     | rode r                                           | natei                                         | rial                                                      |                                                     |
|       |      |          |        |          | E0<br>E1     | 316L<br>Platir | stainle<br>um iri  | ess ste<br>dium ( | el<br>Dt)  |                    | E4<br>E5       | Titan                     | ium (T<br>ellov C                                | тi)<br>≻ (⊔с                                  | <b>`</b> )                                                |                                                     |
|       |      |          |        |          | E2<br>E3     | Haste          | elloy B<br>alum (1 | (HB)<br>(a)       | )          |                    | E6             | Tung                      | isten c                                          | arbic                                         | de (W                                                     | C)                                                  |
|       |      |          |        | Co<br>de | Lining       | ]              |                    |                   |            |                    | Co<br>de       | Linin                     | g                                                |                                               |                                                           |                                                     |
|       |      |          |        | N1<br>N2 | PFA<br>Natur | al rub         | her                |                   |            |                    | N4<br>N5       | polyı<br>Polyt            | urethai<br>etraflu                               | ne<br>Ioroe                                   | thvler                                                    | ne                                                  |
|       |      |          |        | N3       | Neop         | rene r         | ubber              |                   |            |                    | N6             | F46                       |                                                  |                                               |                                                           |                                                     |
|       |      |          | Co     | Medi     | um ter       | nperat         | ture               |                   |            |                    | C              | Medi                      | um ter                                           | mper                                          | ature                                                     |                                                     |
|       |      |          | T0     | ≤60 °(   | 2            |                |                    |                   |            |                    | T1             | ≤120                      | °C                                               |                                               |                                                           |                                                     |
|       |      | Co<br>de | Rate   | d pres   | sure         |                |                    |                   |            |                    | Co<br>de       | Rate                      | d pres                                           | sure                                          |                                                           |                                                     |
|       |      | P4       | 4.0M   | IPa,DI   | N10∼[        | DN80           |                    |                   |            |                    | P1             | 1.0M                      | Pa, D                                            | DN20                                          | 0∼D                                                       | N1000                                               |
|       |      | P1<br>6  | 1.6M   | lPa,DI   | v100~        | DN15           | 50                 |                   |            |                    | P0<br>6        | 0.6M                      | Pa, C                                            | DN12                                          | 200~[                                                     | DN1600                                              |
|       | С    | Meas     | suring | pipe o   | diamet       | er             |                    |                   |            |                    | Ŭ              |                           |                                                  |                                               |                                                           |                                                     |



D The code meaning of DNxx is to measure the inner diameter of the pipe as xx. The selection of pipe diameter is shown in Table 1. The default material for the measuring tube is 304 stainless steel.

PCL-E Divided type electromagnetic flowmeter (flange connection method)

#### Example: PCL-E20-DN100P16T0N5E0EE1C0F0G0S0B0A0EX0

Model Description:

PCL-E20 split type electromagnetic flowmeter, with a pipeline diameter of DN100, rated pressure of 1.6MPa, medium temperature  $\leq$  60 °C, lining material of polytetrafluoroethylene (PTFE), electrode material of 316L, built-in grounding electrode, excitation coil shell of carbon steel, connecting flange material of carbon steel, power supply of 24VDC, analog signal of 4-20mA (with pulse/frequency), RS485 digital signal output signal, no accessories, and no explosion-proof requirements.

#### **Selection tips**

According to statistics from authoritative institutions around the world, two-thirds of instrument failures in practical applications are caused by incorrect selection and installation of instruments. Therefore, the selection of flow meters is a very important task in practical applications. When selecting models, please note:

1. Collect process data

a. The name of the tested fluid and the composition of the chemical substances contained;

b. The maximum flow rate, minimum flow rate, and commonly used flow rate of the fluid;

c. The maximum working pressure of the fluid;

d. The highest and lowest temperature of the fluid.

2. The measured fluid must have a certain degree of conductivity, with a conductivity of  $\geq$  5  $\mu$  S/cm.

3. The maximum and minimum flow rates must comply with the values in the flow range table.

4. The actual maximum working pressure must be less than the rated working pressure of the flow meter guide pipe.

5. The maximum and minimum operating temperatures of the fluid must meet the temperature requirements specified by the flowmeter.

6. Determine if there is a negative pressure in the process pipeline.

7. When measuring clean media, the economic flow rate is 1.5m/s-3m/s; When measuring the easy crystallization solution, the flow rate should be appropriately increased to 3m/s~4m/s to automatically clean and prevent adhesion and deposition; When measuring wear-resistant fluids such as mineral slurry, the flow rate should be appropriately reduced to 1m/s~2m/s to reduce wear on the lining and electrodes. In practical applications, there are few flow velocities exceeding 7m/s, and those exceeding 10m/s are even rarer.

8. You can choose a suitable electromagnetic flow meter based on the actual situation. If the inner diameter of the selected electromagnetic flow meter does not match the inner diameter of the on-site process pipeline, it should be shrunk or expanded.

a. If the pipeline undergoes shrinkage, consideration should be given to whether the pressure loss caused by shrinkage will affect the process flow.

b. Considering improving measurement accuracy and product price, smaller caliber electromagnetic flow meters can be chosen to reduce economic investment.



## 1. Common pipeline caliber and rated pressure

Table 3 Conventional Rated Pressure of Flange

| Pipe diameter | Rated pressure |
|---------------|----------------|
| DN10~DN50     | 4.0MPa         |
| DN100~DN400   | 1.6MPa         |
| DN450~DN600   | 1.0MPa         |
| DN700~DN1600  | 0.6MPa         |

# 2. Applicability of electrode material

Table 4 Applicability of Electrode Materials

| Electrode<br>material | Corrosion Resistance                                                                                                                                                                                                                                                                                                                                           | Applicability |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 316L                  | Domestic water, industrial water, raw water, groundwater, urban sewage, weakly corrosive acid, alkali, salt solution                                                                                                                                                                                                                                           | Р             |
|                       | Inorganic acids, organic acids, chlorides                                                                                                                                                                                                                                                                                                                      | 0             |
| Hastelloy B<br>(HB)   | Non oxidizing acids such as hydrochloric acid with a concentration of less than 10%, sodium hydroxide with a concentration of less than 50%, ammonium hydroxide alkaline solution with all concentrations, phosphoric acid, organic acids                                                                                                                      | Р             |
|                       | Nitric acid                                                                                                                                                                                                                                                                                                                                                    | 0             |
| Hastelloy C           | Mixed acids (such as a mixed solution of chromic acid and sulfuric acid), oxidizing salts (such as Fe+++, Cu++, seawater)                                                                                                                                                                                                                                      | Р             |
| (HC)                  | Hydrochloric acid                                                                                                                                                                                                                                                                                                                                              | 0             |
| Titanium (Ti)         | Salt (such as chloride, sodium salt, potassium salt, ammonium salt, hypochlorite, seawater), potassium hydroxide, ammonia hydroxide, barium hydroxide alkaline solution with a concentration less than 50%                                                                                                                                                     | Ρ             |
|                       | Reducing acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, etc                                                                                                                                                                                                                                                               | 0             |
| Tantalum<br>(Ta)      | Hydrochloric acid, dilute sulfuric acid, and concentrated sulfuric acid<br>with a concentration less than 40% (excluding fuming sulfuric acid);<br>Chlorine dioxide, iron chloride, hypochlorous acid, sodium cyanide, lead<br>acetate, etc; Nitric acid (including oxidizing acids such as fuming nitric<br>acid), aqua regia with a temperature below 80 °C. | Р             |
|                       | Alkali, hydrofluoric acid                                                                                                                                                                                                                                                                                                                                      | 0             |
| Platinum              | Almost all acid, alkali, and salt solutions (including fuming nitric acid and fuming sulfuric acid)                                                                                                                                                                                                                                                            | Р             |
| (Pt)                  | Aqua regia, ammonium salts                                                                                                                                                                                                                                                                                                                                     | 0             |
| Tungsten<br>carbide   | Processed neutral industrial wastewater, domestic wastewater, and resistant to solid particle interference; Slurry, such as mud and mortar.                                                                                                                                                                                                                    | Р             |
| (WC)                  | Acid, alkali, salt                                                                                                                                                                                                                                                                                                                                             | 0             |



## Table 5 Applicable Scope of Lining Material

| Lining                                                                   | Symbol   | performance                                                                                                                                                                                                                             | Operation     | Applicable                                                               | Applicable      |
|--------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------|-----------------|
| Teflon                                                                   | F4(PTFE) | 1. Stable chemical<br>performance,<br>resistant to boiling<br>hydrochloric acid,<br>sulfuric acid, aqua<br>regia, nitric acid,<br>concentrated<br>alkali, and various<br>organic solvents<br>2. Poor wear<br>resistance and<br>adhesion | -10℃~<br>120℃ | Highly<br>corrosive<br>acid, alkali,<br>and salt<br>liquids              | DN25~<br>DN1600 |
| Copolymer of<br>tetrafluoroethylene<br>and perfluoroalkyl<br>vinyl ether | PFA      | The corrosion<br>resistance is the<br>same as PTFE,<br>with stainless steel<br>wire mesh inside<br>the measuring<br>tube, which has<br>negative pressure<br>resistance<br>characteristics                                               | -20℃~<br>150℃ | Highly<br>corrosive<br>acid, alkali,<br>and salt<br>liquids              | DN10~<br>DN500  |
| FEP                                                                      | F46(FEP) | The corrosion<br>resistance is the<br>same as PTFE,<br>with stainless steel<br>wire mesh inside<br>the measuring<br>tube, which has<br>negative pressure<br>resistance<br>characteristics                                               | -20℃~<br>150℃ | Highly<br>corrosive<br>acid, alkali,<br>and salt<br>liquids              | DN10~<br>DN500  |
| Neoprene rubber                                                          | CR       | Moderate wear<br>resistance,<br>resistant to<br>corrosion from<br>generally low<br>concentrations of<br>acids, alkalis, and<br>salts                                                                                                    | -15℃~80℃      | Measure<br>general<br>water,<br>sewage,<br>mud, and<br>mineral<br>slurry | DN50~<br>DN1600 |



| Polyurethane | PU | Excellent wear<br>resistance, poor<br>acid and alkaline<br>resistance | -10℃~80℃ | Neutral and<br>strongly<br>worn<br>mineral<br>slurry, coal | DN25~<br>DN300 |
|--------------|----|-----------------------------------------------------------------------|----------|------------------------------------------------------------|----------------|
|              |    |                                                                       |          | slurry, slurry                                             |                |

# 4. Caliber and flow measurement range

# Table 6 Caliber and Flow Measurement Range

|              | Minimum flow velocity (m/s) | Maximum flow velocity (m/s) |  |  |
|--------------|-----------------------------|-----------------------------|--|--|
| Caliber (mm) | 0.5                         | 10                          |  |  |
|              | Minimum flow rate (m3/h)    | Maximum flow rate (m3/h)    |  |  |
| 10           | 0.1414                      | 2.8274 (1.414@5 m/s)        |  |  |
| 15           | 0.3181                      | 6.3615                      |  |  |
| 20           | 0.5655                      | 11.3094                     |  |  |
| 25           | 0.8836                      | 17.6709                     |  |  |
| 32           | 1.4476                      | 28.9521                     |  |  |
| 40           | 2.2619                      | 45.2376                     |  |  |
| 50           | 3.5343                      | 70.6838                     |  |  |
| 65           | 5.9730                      | 119.4555                    |  |  |
| 80           | 9.0478                      | 180.9504                    |  |  |
| 100          | 14.1372                     | 282.7350                    |  |  |
| 125          | 22.0893                     | 441.7734                    |  |  |
| 150          | 31.8086                     | 636.1538                    |  |  |
| 200          | 56.5487                     | 1130.9400                   |  |  |
| 250          | 88.3573                     | 1767.0938                   |  |  |
| 300          | 127.2345                    | 2544.6150                   |  |  |
| 350          | 173.1803                    | 3463.5038                   |  |  |
| 400          | 226.1947                    | 4523.7600                   |  |  |
| 500          | 353.4292                    | 7068.3750                   |  |  |
| 600          | 508.9380                    | 10178.4600                  |  |  |
| 700          | 692.7212                    | 13854.0150                  |  |  |
| 800          | 904.7787                    | 18095.0400                  |  |  |
| 900          | 1145.1105                   | 22901.5350                  |  |  |
| 1000         | 1413.7617                   | 28273.5000                  |  |  |
| 1100         | 1710.5972                   | 34210.9350                  |  |  |
| 1200         | 2035.7520                   | 40713.8400                  |  |  |
| 1400         | 2770.8847                   | 55416.0600                  |  |  |



| 1500 | 3186.8625 | 63615.3750 |
|------|-----------|------------|
| 1600 | 3619.1147 | 72380.1600 |

Note: The values in this table are rounded off for reference only.

Please calculate the exact value according to the following formula:

In the equation of  $Q = 9\pi \times d^2 \times v/10000$ , *Q*: Flow rate, unit;m<sup>3</sup>/h; *d*: Flowmeter diameter,unit mm;  $\pi$ : Pi3.14; *v*: Flow rate, in units m/s.

Wotian reserves the right to make any change in this publication without notice. The information provided is believed to be accurate and reliable as of this product sheet.

# **Contact Us**

Nanjing Wotian Technology Co.,Ltd.

Website: www.wtsensor.com

Add: 5 Wenying Road, Binjiang Development Zone, Nanjing, 211161, China

Email: dr@wtsensor.com