

PC10 Piezoresistive Silicon Pressure Sensor

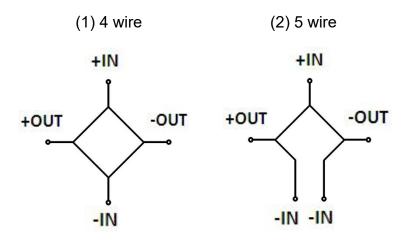
Features

- With constant current and constant voltage excitation options
- Imported highly reliable pressure die
- Wide temperature compensation
- Normalized output available
- Compensation board filled with glue for protection against moisture
- Φ19mm standard OEM
- All 316L material
- High performance, all solid, high reliability
- 18 months warranty period

Applications

- Process control systems
- Pressure calibration instruments
- Refrigeration equipment and HVAC control
- Hydraulic systems and valves
- Level measurement
- Biomedical instruments
- Ships and navigation
- Aircraft and avionics systems
- Weaponry

Product overview


PC10 piezoresistive silicon pressure sensor is the core component for the manufacture of pressure sensors and pressure transmitters. As high-performance pressure sensitive component, PC10 can be easily amplified and assembled into the pressure transmitters with standard signal output.

PC10 packages diffused silicon pressure sensitive die to 316L stainless steel housing. External pressure is transmitted to pressure sensitive die through stainless steel diaphragm and internally sealed silicon oil. Pressure sensitive die does not directly contact with measured medium, forming all solid structure of pressure measurement. So the product can be applied to a variety of occasions, including harsh corrosive medium environment.

PC10 uses O-ring for pressure seal, which is easy to install.

The company can also undertake special customization based on the needs of users, such as pressure sensors of all welded structure, wide temperature compensation, high reliability, anti-shock and anti-vibration sensors, especially for national defense weapons and equipment.

Equivalent circuit

www.wtsensor.com

Notes:

1 Do not touch the diaphragm with hard objects, which may cause damage to the diaphragm.

2 Please read the Instruction Manual of the product carefully before installation and check the relevant information of the product.

3 Strictly follow the wiring method for wiring, otherwise it may cause product damage or other potential faults.

4 Misuse of the product may cause danger or personal injury.

Notes:

1 Do not misuse documentation.

2 The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.

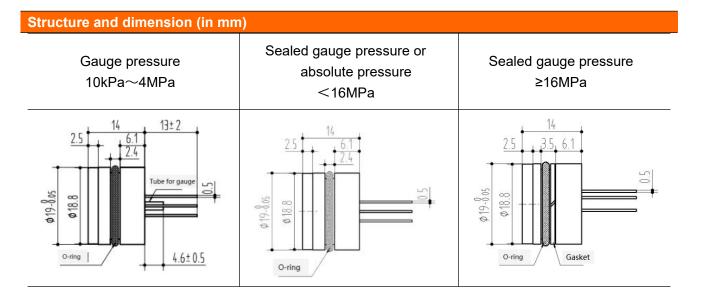
3 Complete installation, operation, and maintenance information is provided in the instructions of the product.

4 Misuse of the product may cause danger or personal injury.

Electrical performance	parameters			
Pressure range	-100kPa~0~10kPa100MPa			
Pressure reference	Gauge pressure, Absolute pressure, Sealed gauge pressure			
Excitation	1.5mA recommended for constant current			
Excitation	10V recommended for constant voltage			
Innutimpodence	Constant current: 2kΩ~5kΩ			
Input impedance	Constant voltage: 3kΩ~18kΩ			
Electrical connection	Gold-plated KOVAR pin or silicon soft wire			
Compensation temp.	0°C~60°C (≤70kPa); -10°C ~70°C (other ranges)			
Operating temp.	-40°C~125℃			
Storage temp.	-40℃~125℃			
Insulation resistance	≥200MΩ/250VDC			
Response time	≤1ms (up to 90%FS)			
Measured medium	All the liquids and gases compatible with 316L.			
Mechanical vibration	20g (20~5000Hz)			
Shock	100g /10ms			
Durability	10 ⁶ pressure cycles			
Structural performance	e parameters			
Diaphragm material	316L			
Housing material	316L			
Oil filling	Silicon oil			
Sealing ring	NBR or fluorine rubber			

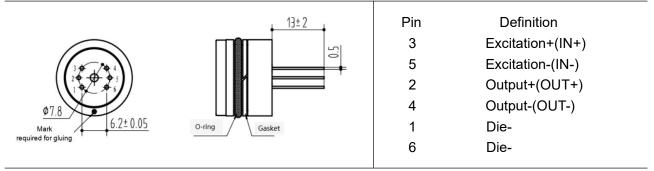
Basic parameters						
ltem	Condition	Min	Typical	Max	Unit	Note
Nonlinearity		-0.3	±0.2	0.3	%FS	Notes(1)(2)
Hysteresis		-0.05	±0.03	0.05	%FS	
Repeatability		-0.05	±0.03	0.05	%FS	

Basic parameters (cont.)						
Item	Condition	Min	Typical	Max	Unit	Note
Zero output		-2	±1	2	mV	
Full span output	1.5mA (10kPa)	30				
	1.5mA (other ranges)	60	90	150	mV	
	10V (10kPa)	60				
	10V (other ranges)	98	100	102		
Zero temp.	10kPa	-2	±1.5	2	%FS	Notoo(2)
coefficient	(other ranges)	-1.5	±0.75	1.5	7053	Notes(3)
Sensitivity temp.		-1.5	±0.75	1.5	%FS	Notes(3)
coefficient		-1.5	10.75	1.5	7053	
Thermal hysteresis		-0.07	±0.05	0.075	%FS	Notes(4)
		5	±0.05			
Long term stability		-0.3	±0.2	0.3	%FS/Year	


Notes:

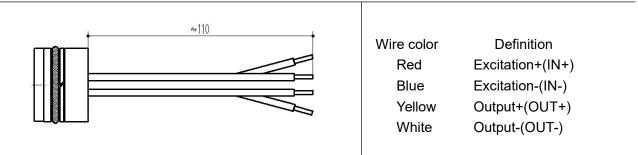
(1) Calculate according to BFSL least square method.

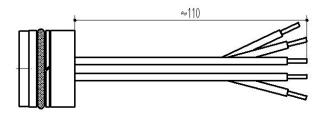
(2) 100MPa nonlinearity: ±0.55%FS.


(3) In the compensation temperature range, refer to 30 $^\circ$ C for 0 $^\circ$ C ~ 60 and -10 $^\circ$ C ~ 70 $^\circ$ C.

(4) After passing high and low temperature, return to the reference temperature.

Electrical connection (in mm)

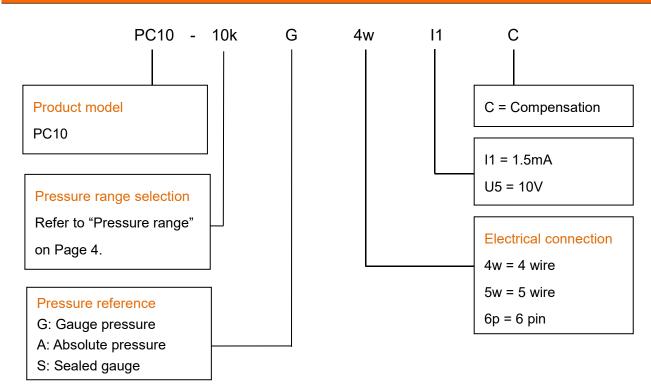

1.6 pin (6p)



Electrical connection (in mm) (cont.)

2. 4 wires (4w)

3. 5 wires (5w)



Wire color	Definition			
Red	Excitation+(IN+)			
Blue	Excitation-(IN-)			
Blue	Excitation-(IN-)			
Yellow	Output+(OUT+)			
White	Output-(OUT-)			

Pressure range selection						
Code	Pressure reference	Pressure range	Overpressure	Burst pressure	O-ring	
10k	G	0~10kPa	300%FS	600%FS	NBR	
20k	G	0~20kPa	300%FS	600%FS	NBR	
35k	G, A	0~35kPa	300%FS	600%FS	NBR	
70k	G	0~70kPa	300%FS	600%FS	NBR	
100k	G, A	0~100kPa	200%FS	500%FS	NBR	
160k	G, A	0~160kPa	200%FS	500%FS	NBR	
250k	G, A	0~250kPa	200%FS	500%FS	NBR	
400k	G, A	0~400kPa	200%FS	500%FS	NBR	
600k	G, A	0~600kPa	200%FS	500%FS	NBR	
1M	G, A	0~1MPa	200%FS	500%FS	NBR	
1.6M	G, A, S	0~1.6MPa	200%FS	500%FS	NBR	
2.5M	G, A, S	0~2.5MPa	200%FS	500%FS	NBR	
4M	S	0~4MPa	200%FS	400%FS	NBR	
6M	S	0~6MPa	200%FS	400%FS	Fluorine rubber	
10M	S	0~10MPa	200%FS	400%FS	Fluorine rubber	
16M	S	0~16MPa	200%FS	400%FS	Fluorine rubber	
25M	S	0~25MPa	150%FS	400%FS	Fluorine rubber	
40M	S	0~40MPa	150%FS	300%FS	Fluorine rubber	
60M	S	0~60MPa	150%FS	300%FS	Fluorine rubber	
100M	S	0~100MPa	150%FS	300%FS	Fluorine rubber	
N1k	Omitted	±100kPa	300kPa	600kPa	NBR	

Note: G: Gauge pressure, A: Absolute pressure, S: Sealed gauge pressure

Example: PC10-10kG4wI1C

Product model: PC10. 10k: pressure range 0~10kPa. G: gauge pressure. 4w: 4 wire electrical connection. I1: 1.5mA excitation. C: Compensation.

Ordering tips:

1 Pressure range can be selected higher or lower than actual conditions but should be within ±30%FS.

2 Pressure reference consists of gauge pressure, absolute pressure and sealed gauge pressure.

- (1) Gauge pressure is based on the current atmospheric pressure. Generally, it refers to the measurement of pressure which is greater than the current atmospheric pressure. Negative pressure is a special case of gauge pressure. It refers that there is such working condition that the pressure of work site is lower than the current atmospheric pressure.
- (2) Absolute pressure is based on vacuum.
- (3) As for sealed gauge pressure, PC10 uses absolute pressure die for gauge pressure product based on the atmospheric pressure of production site. For pressure range above 6MPa, gauge pressure cannot be selected, but only sealed gauge pressure.

3 Confirm the maximum overload of the applied system, which should be less than the overload protection limit of the sensor, otherwise it will affect the product life or even damage the product.

4 The commonly used compensation of the product is 1.5mA constant current compensation. Suggest to select the option with priority.

5 The material and process for manufacturing negative pressure sensors are different from those of positive pressure sensors. So gauge pressure sensors cannot be used as substitute of negative pressure sensors.

6 For special requirements on performance parameters and functions of the product, please contact us.

Wotian reserves the right to make any change in this publication without notice. The information provided is believed to be accurate and reliable as of this product sheet.

Contact us

Nanjing Wotian Technology Co., Ltd. Website: www.wtsensor.com Add: 5 Wenying Road, Binjiang Development Zone, Nanjing, 211161, China E-mail: dr@wtsensor.com